
LHTNDT: LEARN HTN METHOD PRECONDITIONS USING
DECISION TREE

Fatemeh Nargesian and Gholamreza Ghassem-Sani
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Keywords: AI Planning, hierarchical task network planning, machine learning, decision tree, domain knowledge.

Abstract: In this paper, we describe LHTNDT, an algorithm that learns the preconditions of HTN methods by
examining plan traces produced by another planner. LHTNDT extracts conditions for applying methods by
using decision tree based algorithm. It considers the state of relevant domain objects in both current and
goal states. Redundant training samples are removed using graph isomorphism. Our experiments, LHTNDT
converged. It can learn most of preconditions correctly and quickly. 80% of our test problems were solved
by preconditions extracted by ¾ of plan traces needed for full convergence.

1 INTRODUCTION

Hierarchical Task Network (HTN) planning is a
promising and applicative research topic in Artificial
Intelligence. The basic idea of HTN was first
developed in mid-70s (Sacerdoti 1975; Tate 1977).
Its formal underpinnings were developed in mid-90s
(Erol, Hendler, and Nau 1996). An HTN planning
problem consists of an initial state, a set of tasks to
be performed as problem goal, and a domain
description. HTN domain description contains a set
of operators as primitive tasks (they can be
performed directly in the domain during execution
time) and a set of methods describing possible ways
of decomposing tasks into subtasks and subtasks
into primitive tasks. Each method has a
precondition. In order to apply a method on a
planning state, its precondition must be satisfied in
that state. Planning is done by applying methods to
decompose non-primitive tasks into subtasks, and
applying operators to primitive tasks to produce
actions. Planning ends when all of the tasks
mentioned in the goal set are satisfied, then the
planner has found a solution plan; otherwise the
planner will need to backtrack and try other
applicable methods and actions that are not
considered yet (Ilghami, et al. 2005).

HTN is a configurable planner whose domain
knowledge is provided by a human domain expert to
achieve satisfactory performance. Therefore, such
planners’ functionality depends on domain-specific

problem solving knowledge to be accurate. It should
be born in mind that the designer of a domain for a
configurable planner generally has many valid
alternative ways of specifying the domain, and it is
well known that the exact form of the domain can
have a large impact on the efficiency of a given
planner. Even if a human designer can identify some
of the complex manner in which the tasks and
operators in a domain description interact, he will
likely be faced with tradeoffs between efficiency and
factors such as compactness, comprehensibility and
expressiveness. Consequently, there are obvious
advantages to a planner that can evolve its domain
theory via learning. Learning is the process of using
past experiences and percepts to improve one’s
ability to act in the future. The extensive survey and
analysis of research work related to machine
learning as applied to planning reveals that machine
learning methods can be used in learning and
improving planning domain theory (Zimmerman and
Kambhampati 2003). In this paper, we discuss a
learning algorithm for evolving HTN planning
domain automatically.

In recent years, several researches have reported
work on integrating learning methods and HTN
planning. An example is a system called HICAP,
developed by Munoz-Avila et al. 1999, which uses
planning in military environment. HICAP integrates
SHOP, a hierarchical planner, (Nau, et al. 1999) and
a case-based reasoning (CBR) system called
NaCoDAE (Aha and Breslow 1997). Learning HTN
domain means eliciting the hierarchical structure

60
Nargesian F. and Ghassem-Sani G. (2008).
LHTNDT: LEARN HTN METHOD PRECONDITIONS USING DECISION TREE.
In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - ICSO, pages 60-65
DOI: 10.5220/0001499900600065
Copyright c© SciTePress

relating tasks and subtasks. Existing work on
learning hierarchies, extracts hierarchy from a
collection of plans having primitive operators’
descriptions (Ruby and Kibler 1991; Reddy and
Tadepalli 1997; Choi and Langley 2005). The idea is
that the tasks are the same as goals that have been
achieved by the plans. Reddy and Tedepally, in X-
Learn system, uses inductive generalization to learn
task decomposition constructs, named D-rules,
which relate goals, sub-goals and conditions of goal
decomposition.

Research on learning macro-operators (Korf 1987;
Mooney 1998; Botea, Muller, and Schaeffer 2005)
falls in the category of learning hierarchical
structures in planning domains. ALPINE (Knoblock
1993) and PARIS (Bergmann and Wilke 1995)
systems are good examples of using abstraction in
planning. Knoblock presented a completely
automated approach for generating abstractions of
problem solving using a tractable, domain-
independent algorithm. The inputs of this system are
the definition of a problem space and the problem to
be solved; and the output is an abstraction hierarchy
that is tailored to particular problem. Two recent
studies (Ilghami et al. 2005; Xu and Munoz-Avila
2005) propose eager and lazy learning methods
respectively to learn the preconditions of HTN
methods. Ilghami, in CaMeL, assumes that method
definitions are available and uses Candidate
Elimination Algorithm to extract methods'
preconditions from plan traces. In HDL (Ilghami,
Nau, and Munoz-Avila 2006), there is no prior
information about the methods and it learns HTN
domain description by examining plan traces
produced by another HTN problem-solver. Another
recent work, by Langley and Choi 2005, learns a
special case of HTNs, known as teleoreactive logic
programs. Rather than a task list, this system uses a
collection of Horn Clause-like concepts. The most
recent work, by Hogg 2007, presents HTN-
MAKER, an offline and incremental algorithm for
learning task models. HTN-MAKER receives as
input a collection of plans generated by a STRIPS
planner (Fikes and Nilsson 1971), an action model,
and a collection of task definitions; and produces a
task model. When combined with the action model,
this task model results in an HTN domain model.

Here, we introduce LHTNDT (Learn HTN using
Decision Tree), an algorithm that uses a decision
tree based learning method for learning
preconditions of HTN methods. It is assumed that
system has the knowledge of general structure of
decomposing tasks into subtasks. But this
knowledge is incomplete in case that it does not

have sufficient information about where to use the
method to be successful and efficient. LHTNDT
learns conditions for efficient application of methods
by doing analysis on plan traces that are known to be
successful or unsuccessful for certain problem
instances. The preconditions are shown in the
formalism of a decision tree.

The paper is organized in 5 sections. Section 2
overviews the inputs to the learning algorithm and
its output. Section 3 discusses the learning
algorithm. Section 4 reports empirical results of
applying learning method on a planning domain.
Finally section 5 draws conclusions and describes
future work.

2 INPUTS AND OUTPUTS OF
LHTNDT

Inputs to the learning algorithm are annotated plans.
We use a set of optimal plan traces, which contain
not only the correct methods used for a planning
problem, but also information about possible
decisions that could be made while this plan was
being generated. This form of input is often
preferable because it will result in faster and more
accurate learning, because plan traces contain much
more information about the domain being learned
than plans (Ilghami et al. 2005). The annotated plan
traces are in the form of trees whose nodes are the
states that the planner has passed through in order to
achieve a goal. For each node we consider not only
the methods that are on the path, to the goal state but
also other applicable methods that have caused
failure in planning or optimal planning.
The annotated plan traces are in the form of trees
whose nodes are the states that the planner have
passed through in order to achieve the goal.
The decision tree based learning algorithm is used
for extracting complete domain knowledge for HTN.
By using decision trees, planner is not obliged to test
all method preconditions during test time. In the
proposed algorithm, one decision tree is generated
for each domain method. The target attribute of
theses trees specify whether to use the
corresponding method or not.
Thus, the output of LHTNDT is certain decision
trees as preconditions of the domain methods.
According to the structure of decision trees, the
precondition learned for HTN by LHTNDT is a
disjunctive normal form of sentences.

LHTNDT: LEARN HTN METHOD PRECONDITIONS USING DECISION TREE

61

Figure 1: The LHTNDT algorithm.

3 LHTNDT ALGORITHM

Pseudo-code of LHTNDT is given in Figure 1. For
learning the preconditions of applicable methods of
a state, we consider both the current and goal states
of the plan. The attributes of the decision trees are
the combination of domain predicates and all objects
of the domain. These attributes are doubled when
they are considered for both appearing in the goal
and current states. The values that these attributes
can take are True, False and Don’t Care. The third
value provides the system with the ability to check
just the attributes that are important as preconditions
of the method, during the test phase. LHTNDT starts
by defining and initializing decision trees. Then for
each node in each given plan trace, it produces a
training sample for each applicable method. If
applying the method on a node results in a non-goal
leaf node, it reveals that using the method in that
situation resulted in failure or a non-optimal plan.
Thus, the sample extracted from it should be of type
Negative. Otherwise, the produced sample is
considered as Positive sample. The sample is added
to training set if it does not have common structure
with other existing samples. Finally, LHTNDT

learns certain decision trees for domain methods.
The algorithm converges when learned decision
tress for methods converge. In other words,
hypothesis spaces for preconditions converge to a
fixed point. The subroutines of LHTNDT are as
follows:
• ExtractImportantObjects(samp, mi), is a

function that iteratively extracts the objects of
the domain that are somehow related to method
mi. The main idea is inspired by Ilghami et al.
2005. The relative situation of domain objects in
the current state and also their ultimate situation
in the goal state specifies whether to apply the
method or not. Considering the objects that are
directly or indirectly related to the objects on
which method is applied, assists the system not
to learn the facts that are not useful. The
function starts by initializing relevant objects to
the set of objects that have appeared in a
predicate of current state with at least one of the
objects in the arguments of method mi. Then, in
each subsequent iteration, it alternatively
processes goal state and current state and adds
those remaining objects that are in a predicate in
which one of the objects in the relevant objects

Inputs: S={S1, …, Sn}, a set of world states

 M={m1, …, mn}, the set of operators in HTN domain (D)
 Π={ Π1, …, Πn}, a set of plan traces
 (Ii, Gi, D), planning problem
 I: Initial State
 G: Goal State

Output: DT, a set of decision trees, each of them represents the precondition of
a method

LHTNDT(S, I, G, M, Π)
DT=0, Samplesi=0
FOR each plan trace Πi ∈ Π
 FOR each node n in Πi, whose si ∈ S except I and G
 FOR each method mi ∈ M considered in n
 Let samp be a training sample
 samp.CurrentState = n.State
 samp.GoalState = Πi .GoalState
 IF applying mi to n results in a non-leaf node
 Samp.Type = “Positive”
 ELSE
 Samp.Type = “Negative”
 ExtractImportantObjects (samp, mi)
 IF (AddSample (Generalize (samp, mi), Samplesi, mi)))
 MakeDTTrainingSample (samp, Samplesi)
FOR each method mi in M
 LearnDT(Samplesi, mi, DT)
RETURN DT

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

62

Goal state:Current State:

mi: unstack_putdown(2, 3)

Relevant Objects={1, 2, 3}

Figure 2: Graphs for a training sample in Blocks World domain (node 0 is considered as table, node 6 is defined for
specifying non-relevant objects).

set appeared as an argument. These iterations
continue until no new objects are added to the
relevant objects set.

• Generalize(samp, mi), make the generalized
form of the method and also the current and
goal state mentioned in the training sample
samp.

• AddSample(samp, Samplesi, mi), where
Samplesi is the set of all unique training samples
for method mi. This function creates a graph for
each sample. The graph has two components,
one for the initial state and the other for the goal
state. The nodes of the graph are domain
objects, named as various variables. Each node
is labeled by a number indicating whether the
corresponding object is a relevant object. The
edges of the graph are labeled with the name of
the predicate that two nodes are appeared in.
The nodes that are arguments of mi, are labeled
with their argument order in the method. These
graphs are also the generalized form of the
samples. An example of the graph produced for
a sample is depicted in figure 2. In order to
prevent from adding a sample with the same
structure as existing samples, we perform the
test of graph isomorphism between the graph of
samp and the graphs of other samples. If samp
is isomorphic with none of the samples in
Samplesi, samp is a new sample and should be
added to the Samplesi set. Thus, the function
returns True, otherwise it returns False. The
idea of using graphs for extracting new samples
can also be used for the predicates of more than
2 arguments. The algorithm should be modified
in such a way to group and merge nodes that are

involved in a common method and adjoin node
groups.

• MakeDTTrainingSample(samp, Samplesi),
assigns value to the attributes of decision tree in
order to make a training sample. It maps sample
graph nodes to the generalized objects in
attributes by matching the node of the first
argument of the method of samp with the first
generalized object defined in attributes and
continuing this matching by traversing the graph
and mapping generalized object of attributes
and newly-met objects of the graph. For each of
the attributes, if none of the objects in the
attribute is mapped with one of the objects in
sample relevant object set, the value of the
attribute is set to Don’t Care. Otherwise, if the
ground predicate made out of the attribute and
its mapped objects is among initial state or goal
state (according to the attribute name), the value
of the attribute is True and in the case it is not,
the value is False.

• LearnDT(Samplesi, mi, DT), creates a decision
tree for each of the methods according to
training sample in Samplesi.

4 EMPIRICAL EVALUATION

One of the challenges in any learning algorithm is
how to define a criterion to evaluate its output. In
this section, we explain some points about
implementing LHTNDT algorithm. Then, we
discuss our experiments to figure out how many plan
traces are needed to converge and also the precision

13

2 4

5 32

1
54

0

05

0 4

60

1 2

2 3

0 1 0 0

0 5

0 4

60

1 2

2 3

0 1 0

LHTNDT: LEARN HTN METHOD PRECONDITIONS USING DECISION TREE

63

of the planning domain that LHTNDT has learned
by just ¾ of plan traces needed for convergence.
As mentioned in previous section, LHTNDT
extracts training samples from certain annotated
optimal plan traces. Thus, LHTNDT, unlike
previous systems which require plan traces produced
by an expert or a planner working with a hand-
tailored domain, does not need any priori
knowledge. For accuracy of training samples, we
needed all optimal solution plans of a problem. So
that, we firstly used an iterative deepening Depth
First Search (DFS) algorithm modified for planning.
But this planner often failed in domains with many
objects because of their time and space complexity.
In order to fix this problem, we modified HSPa*,
which is an optimal temporal planner, a member of
heuristic search planners. HSP* produces parallel
optimal plans. Since optimal parallel plans are not
certainly optimal sequential plans, optimal
sequential plans are extracted from HSPa* outputs
and plan traces are created for them. We have
assumed a method as a sequence of actions (a two
level hierarchy of tasks). Therefore, the operators for
planning are action sequences (macro-operators) that
are defined as methods’ structure. The domain used
in our experiments is the blocks world, with 4
operators and 3 methods. It is based on the block-
stacking algorithm discussed in (Gupta and Nau
1992). For training the system, we generated 4 sets
of random problems with 3, 5, 6, and 10 blocks
using BWSTATES program (Slaney and Thiébaux
2001). The uniqueness of the problems is checked
by making a graph for each of the problems and
testing its isomorphism relationship with other
problem graphs. The nodes of the graphs are domain
objects and the edges are labeled with predicate
names and a number showing which state this
predicate belongs to: the initial or goal states. Figure
3 compares the number of plan traces LHTNDT
needed to converge.
Although more information is provided in plan
traces of larger problems, the number of plan traces
needed by LHTNDT to converge smoothly increases
as more objects are defined in the domain. The
reason is that the number of attributes and the
situations that should be learned (current and initial
states) increase. It should be also born in mind that a
plan trace contains more negative samples than
positive ones and this may cause later convergence.

An HTN planner is implemented for testing the
preconditions learned by LHTNDT. This planner
acts just like SHOP (Nau, et al. 1999), but in case
that more than one method is recommended, by
decision tree, to be applied, a random method is

chosen. Often, there is not enough information in the
input or there are not enough training samples to
derive an optimal output. We used just ¾ of
problems needed for convergence of LHTNDT for
training and tested the learned preconditions on a
random test set. In the diagram depicted in figure 4,
the precision of method preconditions learned by ¾
problems needed for convergence is shown.
Although the planner could not find a plan for all
test problems, but it can be seen that LHTNDT can
learn most of method preconditions even before full
convergence, because it tries to extract as much
information as it can form input plan traces. The
precisions are high because we have taken into
account the condition of objects both in the current
state and goal state.

5 CONCLUSIONS AND FUTURE
WORK

LHTNDT is an algorithm that learns method
preconditions for HTN planner. Its input consists of
annotated optimal plan traces produced by another
planner (HSP*). LHTNDT takes into account the
structure of current and goal state for learning
conditions of applying a method. Diverse structure
of training samples are extracted by checking the
graph isomorphism among created graphs for
samples. In our experiments in blocks world
domain, although LHTNDT needed various plan
traces to converge, according to the results for
precision of planning domain before full
convergence of preconditions, it learned most of
necessary conditions of methods relatively quickly.
Regarding the fact that no structurally repetitive
training sample is considered for learning and also
the relative state of relevant domain objects in both
current and goal states are explored, it can be
claimed that LHTNDT produces correct
preconditions for HTN planning domain.

27

120
172

389

0
50

100
150
200
250
300
350
400
450

3 5 6 10

Number of Blocks, Blocks World

P
ro

bl
em

s
N

ee
de

d

LHTNDT

Figure 3: Number of plan traces needed to converge.

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

64

A decision tree represents the preconditions of
domain methods as disjunctive normal form of
sentences. We believe that some rules can be
extracted from the decision trees. Therefore, axioms
can be used in presenting the preconditions. If the
existence of recursion is verified in a method
precondition decision tree, the rules will be written
in such a way that the rules that are extracted from
smaller domains can be used for larger domains.
LHTNDT algorithm learns preconditions of HTN
methods. Our future work will include developing
techniques to learn HTN methods' structures from
plan traces produced by another planner.

LHTNDT

0.7

0.8

0.7 0.7

0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

0.82

3 5 6 10

Number of Blocks, Blocks World

P
re

ci
si

on

LHTNDT

Figure 4: Precision of method preconditions learned by ¾
of plan traces needed for full convergence.

REFERENCES

Aha, D. W.; and Breslow, L. A. 1997. Refining
Conversational Case Libraries. In Proceedings of the
Second International Conference on Case-Based
Reasoning, pp. 267-278. Providence, RI: Springer
Press/Verlag Press.

Bergmann, R.; and Wilke, W. 1995. Building and
Refining Abstract Planning Cases by Change of
Representation Language. Journal of Artificial
Intelligence Research, pp. 53-118.

Botea, A.; Muller, M.; and Schaeffer, J. 2005. Learning
Partial-order Macros from Solutions. In Proceedings
of the 15th International Conference on Automated
Planning and Scheduling (ICAPS-05). AAAI Press.

Choi, D.; and Langley, P. 2005. Learning Teleoreactive
Logic Programs from Problem Solving. In
Proceedings of the 15th International Conference on
Inductive Logic Programming. Springer.

Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
Results for Hierarchical Task-Network Planning.
Annual of Mathematics and Artificial Intelligence
18(1), pp. 69-93.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence (2), pp 189-
208.

Gupta, N.; and Nau, D. 1992. On the complexity of
Blocks-world Planning. Artificial Intelligence 56(2-3):
pp. 223-254.

Hogg, Ch. 2007. From Task Definitions and Plan Traces
to HTN Methods, Workshop of International
Conference on Automated Planning and Scheduling
(ICAPS-07).

Ilghami, O.; Nau, D. S.; Munoz-Avila, H.; and Aha, D.
2005. Learning Preconditions for Planning from Plan
Traces and HTN Structure.

Ilghami, O.; Munoz-Avila, H.; Nau, D. S.; and Aha. D.
2005. Learning Approximate Preconditions for
Methods in Hierarchical Plans. In Proceedingsof the
22nd International Conference on Machine Learning,
Bonn, Germany.

Ilghami, O.; Nau, D. S.; and Munoz-Avila, H. 2006.
Learning to Do HTN Planning, International
Conference on Automated Planning and Scheduling
(ICAPS-06).

Knoblock, C. 1993. Abstraction Hierarchies: An
Automated Approach to Reducing Search in Planning.
Norwell, MA: Kluwer Academic Publishers.

Korf, R. E. “Planning as Search: A Quantitative
Approach”, Artificial Intelligence, 33(1), pp. 65-88,
1987.

Mooney, R. J. 1998. Generalizing the Order of Operators
in Macro-Operators. Machine Learning, pp. 270-283.

Munoz-Avila, H.; McFarlane, D.; Aha, D. W.; Ballas, J.;
Breslow, L. A.; and Nau, D. S. 1999. Using
Guidelines to Constrain Case-based HTN Planning. In
Proceedings of the Third International Conference on
Case-Based Reasoning, 288-302. Providence, RI:
Springer Press.

Nau, D. S.; Cao, Y.; Lotem, A.; and Munoz-Avila, H.
1999. SHOP: Simple Hierarchical Ordered Planner. In
Proceedings of the Sixteenth International Joint
conference on Artificial Intelligence, 968-973.
Stockholm: AAAI Press.

Reddy, C.; and Tadepalli, P. 1997. Learning Goal-
decomposition Rules using Exercises. In Proceedings
of the International Conference on Machine Learning
(ICML-97).

Ruby, D.; and Kibler, D. F. 1991. Steppingstone: An
Empirical and Analytic Evaluation. In Proceedings of
the 9th National Conference on artificial Intelligence:
pp. 527-531.

Sacerdoti, E. 1975. The Nonlinear Nature of Plans. In
Proceedings of the 4th International Joint Conference
on Artificial Intelligence, Tiblisi, USSR, pp. 206-214.

Slaney J. K.; and Thiébaux S. 2001. Blocks World
revisited. Artificial Intelligence 125(1-2): pp. 119-153.

Tate, A.; 1977. Generating Project Networks. In
Proceedings of the 5th International Joint Conference
on Artificial Intelligence, Cambridge, MA, pp. 888-
893. MIT Press.

Xu, K.; and Munoz-Avila, H. 2005. A Domain-
independent System for Case-based Task
Decomposition without Domain Theories. In
Proceedingsof the 20th National Conference on
Artificial Intelligence (AAAI-05). AAA Press.

Zimmerman, T.; Kambhampati, S. 2003. Learning-
assisted Automated Planning: Looking back, tracking
Stock, Going Forward. AI Magazine, 73-96.

LHTNDT: LEARN HTN METHOD PRECONDITIONS USING DECISION TREE

65

