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Abstract: In this paper, we describe LHTNDT, an algorithm that learns the preconditions of HTN methods by 
examining plan traces produced by another planner. LHTNDT extracts conditions for applying methods by 
using decision tree based algorithm. It considers the state of relevant domain objects in both current and 
goal states. Redundant training samples are removed using graph isomorphism. Our experiments, LHTNDT 
converged. It can learn most of preconditions correctly and quickly. 80% of our test problems were solved 
by preconditions extracted by ¾ of plan traces needed for full convergence. 

1 INTRODUCTION 

Hierarchical Task Network (HTN) planning is a 
promising and applicative research topic in Artificial 
Intelligence. The basic idea of HTN was first 
developed in mid-70s (Sacerdoti 1975; Tate 1977). 
Its formal underpinnings were developed in mid-90s 
(Erol, Hendler, and Nau 1996). An HTN planning 
problem consists of an initial state, a set of tasks to 
be performed as problem goal, and a domain 
description. HTN domain description contains a set 
of operators as primitive tasks (they can be 
performed directly in the domain during execution 
time) and a set of methods describing possible ways 
of decomposing tasks into subtasks and subtasks 
into primitive tasks. Each method has a 
precondition. In order to apply a method on a 
planning state, its precondition must be satisfied in 
that state. Planning is done by applying methods to 
decompose non-primitive tasks into subtasks, and 
applying operators to primitive tasks to produce 
actions. Planning ends when all of the tasks 
mentioned in the goal set are satisfied, then the 
planner has found a solution plan; otherwise the 
planner will need to backtrack and try other 
applicable methods and actions that are not 
considered yet (Ilghami, et al. 2005). 

HTN is a configurable planner whose domain 
knowledge is provided by a human domain expert to 
achieve satisfactory performance. Therefore, such 
planners’ functionality depends on domain-specific 

problem solving knowledge to be accurate. It should 
be born in mind that the designer of a domain for a 
configurable planner generally has many valid 
alternative ways of specifying the domain, and it is 
well known that the exact form of the domain can 
have a large impact on the efficiency of a given 
planner. Even if a human designer can identify some 
of the complex manner in which the tasks and 
operators in a domain description interact, he will 
likely be faced with tradeoffs between efficiency and 
factors such as compactness, comprehensibility and 
expressiveness. Consequently, there are obvious 
advantages to a planner that can evolve its domain 
theory via learning. Learning is the process of using 
past experiences and percepts to improve one’s 
ability to act in the future. The extensive survey and 
analysis of research work related to machine 
learning as applied to planning reveals that machine 
learning methods can be used in learning and 
improving planning domain theory (Zimmerman and 
Kambhampati 2003). In this paper, we discuss a 
learning algorithm for evolving HTN planning 
domain automatically.  

In recent years, several researches have reported 
work on integrating learning methods and HTN 
planning. An example is a system called HICAP, 
developed by Munoz-Avila et al. 1999, which uses 
planning in military environment. HICAP integrates 
SHOP, a hierarchical planner, (Nau, et al. 1999) and 
a case-based reasoning (CBR) system called 
NaCoDAE (Aha and Breslow 1997). Learning HTN 
domain means eliciting the hierarchical structure 
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relating tasks and subtasks. Existing work on 
learning hierarchies, extracts hierarchy from a 
collection of plans having primitive operators’ 
descriptions (Ruby and Kibler 1991; Reddy and 
Tadepalli 1997; Choi and Langley 2005). The idea is 
that the tasks are the same as goals that have been 
achieved by the plans. Reddy and Tedepally, in X-
Learn system, uses inductive generalization to learn 
task decomposition constructs, named D-rules, 
which relate goals, sub-goals and conditions of goal 
decomposition. 

Research on learning macro-operators (Korf 1987; 
Mooney 1998; Botea, Muller, and Schaeffer 2005) 
falls in the category of learning hierarchical 
structures in planning domains. ALPINE (Knoblock 
1993) and PARIS (Bergmann and Wilke 1995) 
systems are good examples of using abstraction in 
planning. Knoblock presented a completely 
automated approach for generating abstractions of 
problem solving using a tractable, domain-
independent algorithm. The inputs of this system are 
the definition of a problem space and the problem to 
be solved; and the output is an abstraction hierarchy 
that is tailored to particular problem. Two recent 
studies (Ilghami et al. 2005; Xu and Munoz-Avila 
2005) propose eager and lazy learning methods 
respectively to learn the preconditions of HTN 
methods. Ilghami, in CaMeL, assumes that method 
definitions are available and uses Candidate 
Elimination Algorithm to extract methods' 
preconditions from plan traces. In HDL (Ilghami, 
Nau, and Munoz-Avila 2006), there is no prior 
information about the methods and it learns HTN 
domain description by examining plan traces 
produced by another HTN problem-solver. Another 
recent work, by Langley and Choi 2005, learns a 
special case of HTNs, known as teleoreactive logic 
programs. Rather than a task list, this system uses a 
collection of Horn Clause-like concepts. The most 
recent work, by Hogg 2007, presents HTN-
MAKER, an offline and incremental algorithm for 
learning task models. HTN-MAKER receives as 
input a collection of plans generated by a STRIPS 
planner (Fikes and Nilsson 1971), an action model, 
and a collection of task definitions; and produces a 
task model. When combined with the action model, 
this task model results in an HTN domain model. 

Here, we introduce LHTNDT (Learn HTN using 
Decision Tree), an algorithm that uses a decision 
tree based learning method for learning 
preconditions of HTN methods. It is assumed that 
system has the knowledge of general structure of 
decomposing tasks into subtasks. But this 
knowledge is incomplete in case that it does not 

have sufficient information about where to use the 
method to be successful and efficient. LHTNDT 
learns conditions for efficient application of methods 
by doing analysis on plan traces that are known to be 
successful or unsuccessful for certain problem 
instances. The preconditions are shown in the 
formalism of a decision tree.  

The paper is organized in 5 sections. Section 2 
overviews the inputs to the learning algorithm and 
its output. Section 3 discusses the learning 
algorithm. Section 4 reports empirical results of 
applying learning method on a planning domain. 
Finally section 5 draws conclusions and describes 
future work. 

2 INPUTS AND OUTPUTS OF 
LHTNDT 

Inputs to the learning algorithm are annotated plans. 
We use a set of optimal plan traces, which contain 
not only the correct methods used for a planning 
problem, but also information about possible 
decisions that could be made while this plan was 
being generated. This form of input is often 
preferable because it will result in faster and more 
accurate learning, because plan traces contain much 
more information about the domain being learned 
than plans (Ilghami et al. 2005). The annotated plan 
traces are in the form of trees whose nodes are the 
states that the planner has passed through in order to 
achieve a goal. For each node we consider not only 
the methods that are on the path, to the goal state but 
also other applicable methods that have caused 
failure in planning or optimal planning.  
The annotated plan traces are in the form of trees 
whose nodes are the states that the planner have 
passed  through in order to achieve the goal.  
The decision tree based learning algorithm is used 
for extracting complete domain knowledge for HTN. 
By using decision trees, planner is not obliged to test 
all method preconditions during test time. In the 
proposed algorithm, one decision tree is generated 
for each domain method. The target attribute of 
theses trees specify whether to use the 
corresponding method or not. 
Thus, the output of LHTNDT is certain decision 
trees as preconditions of the domain methods. 
According to the structure of decision trees, the 
precondition learned for HTN by LHTNDT is a 
disjunctive normal form of sentences.  

LHTNDT: LEARN HTN METHOD PRECONDITIONS USING DECISION TREE

61



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The LHTNDT algorithm.

3 LHTNDT ALGORITHM 

Pseudo-code of  LHTNDT is  given in Figure 1. For  
learning the preconditions of applicable methods of 
a state, we consider both the current and goal states 
of the plan. The attributes of the decision trees are 
the combination of domain predicates and all objects 
of the domain. These attributes are doubled when 
they are considered for both appearing in the goal 
and current states. The values that these attributes 
can take are True, False and Don’t Care. The third 
value provides the system with the ability to check 
just the attributes that are important as preconditions 
of the method, during the test phase. LHTNDT starts 
by defining and initializing decision trees. Then for 
each node in each given plan trace, it produces a 
training sample for each applicable method. If 
applying the method on a node results in a non-goal 
leaf node, it reveals that using the method in that 
situation resulted in failure or a non-optimal plan. 
Thus, the sample extracted from it should be of type 
Negative. Otherwise, the produced sample is 
considered as Positive sample. The sample is added 
to training set if it does not have common structure 
with other existing samples. Finally, LHTNDT 

learns certain decision trees for domain methods. 
The algorithm converges when learned decision 
tress for methods converge. In other words, 
hypothesis spaces for preconditions converge to a 
fixed point. The subroutines of LHTNDT are as 
follows: 
• ExtractImportantObjects(samp, mi), is a 

function that iteratively extracts the objects of 
the domain that are somehow related to method 
mi. The main idea is inspired by Ilghami et al. 
2005. The relative situation of domain objects in 
the current state and also their ultimate situation 
in the goal state specifies whether to apply the 
method or not. Considering the objects that are 
directly or indirectly related to the objects on 
which method is applied, assists the system not 
to learn the facts that are not useful. The 
function starts by initializing relevant objects to 
the set of objects that have appeared in a 
predicate of current state with at least one of the 
objects in the arguments of method mi. Then, in 
each subsequent iteration, it alternatively 
processes goal state and current state and adds 
those remaining objects that are in a predicate in 
which one of the objects in the relevant objects  

 
Inputs: S={S1, …, Sn}, a set of world states 

 M={m1, …, mn}, the set of operators in HTN domain (D) 
 Π={ Π1, …, Πn}, a set of plan traces 
 (Ii, Gi, D), planning problem 
 I: Initial State 
 G: Goal State 

Output: DT, a set of decision trees, each of them represents the precondition of 
a method 
 
LHTNDT(S, I, G, M, Π) 
DT=0, Samplesi=0 
FOR each plan trace Πi ∈ Π 
     FOR each node n in Πi, whose si ∈ S except I and G 
          FOR each method mi ∈ M considered in n 
               Let samp be a training sample 
               samp.CurrentState = n.State 
               samp.GoalState = Πi .GoalState 
               IF applying mi to n results in a non-leaf node 
   Samp.Type = “Positive” 
               ELSE 
                    Samp.Type = “Negative” 
               ExtractImportantObjects (samp, mi)  
               IF (AddSample (Generalize (samp, mi), Samplesi, mi))) 
       MakeDTTrainingSample (samp, Samplesi) 
FOR each method mi in M 
     LearnDT(Samplesi, mi, DT) 
RETURN DT 
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Goal state:Current State: 

mi: unstack_putdown(2, 3) 
 

  

Relevant Objects={1, 2, 3} 

Figure 2: Graphs for a training sample in Blocks World domain (node 0 is considered as table, node 6 is defined for 
specifying non-relevant objects).  

set appeared as an argument. These iterations 
continue until no new objects are added to the 
relevant objects set. 

• Generalize(samp, mi), make the generalized 
form of the method and also the current and 
goal state mentioned in the training sample 
samp. 

• AddSample(samp, Samplesi, mi), where 
Samplesi is the set of all unique training samples 
for method mi. This function creates a graph for 
each sample. The graph has two components, 
one for the initial state and the other for the goal 
state. The nodes of the graph are domain 
objects, named as various variables. Each node 
is labeled by a number indicating whether the 
corresponding object is a relevant object. The 
edges of the graph are labeled with the name of 
the predicate that two nodes are appeared in. 
The nodes that are arguments of mi, are labeled 
with their argument order in the method. These 
graphs are also the generalized form of the 
samples. An example of the graph produced for 
a sample is depicted in figure 2. In order to 
prevent from adding a sample with the same 
structure as existing samples, we perform the 
test of graph isomorphism between the graph of 
samp and the graphs of other samples. If samp 
is isomorphic with none of the samples in 
Samplesi, samp is a new sample and should be 
added to the Samplesi set. Thus, the function 
returns True, otherwise it returns False. The 
idea of using graphs for extracting new samples 
can also be used for the predicates of more than 
2 arguments. The algorithm should be modified 
in such a way to group and merge nodes that are 

involved in a common method and adjoin node 
groups. 

• MakeDTTrainingSample(samp, Samplesi), 
assigns value to the attributes of decision tree in 
order to make a training sample. It maps sample 
graph nodes to the generalized objects in 
attributes by matching the node of the first 
argument of the method of samp with the first 
generalized object defined in attributes and 
continuing this matching by traversing the graph 
and mapping generalized object of attributes 
and newly-met objects of the graph. For each of 
the attributes, if none of the objects in the 
attribute is mapped with one of the objects in 
sample relevant object set, the value of the 
attribute is set to Don’t Care. Otherwise, if the 
ground predicate made out of the attribute and 
its mapped objects is among initial state or goal 
state (according to the attribute name), the value 
of the attribute is True and in the case it is not, 
the value is False. 

• LearnDT(Samplesi, mi, DT), creates a decision 
tree for each of the methods according to 
training sample in Samplesi.  

4 EMPIRICAL EVALUATION 

One of the challenges in any learning algorithm is 
how to define a criterion to evaluate its output. In 
this section, we explain some points about 
implementing LHTNDT algorithm. Then, we 
discuss our experiments to figure out how many plan 
traces are needed to converge and also the precision 
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of the planning domain that LHTNDT has learned 
by just ¾ of plan traces needed for convergence.  
As mentioned in previous section, LHTNDT 
extracts training samples from certain annotated 
optimal plan traces. Thus, LHTNDT, unlike 
previous systems which require plan traces produced 
by an expert or a planner working with a hand-
tailored domain, does not need any priori 
knowledge. For accuracy of training samples, we 
needed all optimal solution plans of a problem. So 
that, we firstly used an iterative deepening Depth 
First Search (DFS) algorithm modified for planning. 
But this planner often failed in domains with many 
objects because of their time and space complexity. 
In order to fix this problem, we modified HSPa*, 
which is an optimal temporal planner, a member of 
heuristic search planners. HSP* produces parallel 
optimal plans. Since optimal parallel plans are not 
certainly optimal sequential plans, optimal 
sequential plans are extracted from HSPa* outputs 
and plan traces are created for them. We have 
assumed a method as a sequence of actions (a two 
level hierarchy of tasks). Therefore, the operators for 
planning are action sequences (macro-operators) that 
are defined as methods’ structure. The domain used 
in our experiments is the blocks world, with 4 
operators and 3 methods. It is based on the block-
stacking algorithm discussed in (Gupta and Nau 
1992). For training the system, we generated 4 sets 
of random problems with 3, 5, 6, and 10 blocks 
using BWSTATES program (Slaney and Thiébaux 
2001). The uniqueness of the problems is checked 
by making a graph for each of the problems and 
testing its isomorphism relationship with other 
problem graphs. The nodes of the graphs are domain 
objects and the edges are labeled with predicate 
names and a number showing which state this 
predicate belongs to: the initial or goal states. Figure 
3 compares the number of plan traces LHTNDT 
needed to converge.  
Although more information is provided in plan 
traces of larger problems, the number of plan traces 
needed by LHTNDT to converge smoothly increases 
as more objects are defined in the domain. The 
reason is that the number of attributes and the 
situations that should be learned (current and initial 
states) increase. It should be also born in mind that a 
plan trace contains more negative samples than 
positive ones and this may cause later convergence. 

An HTN planner is implemented for testing the 
preconditions learned by LHTNDT. This planner 
acts just like SHOP (Nau, et al. 1999), but in case 
that more than one method is recommended, by 
decision tree, to be applied, a random method is 

chosen. Often, there is not enough information in the 
input or there are not enough training samples to 
derive an optimal output. We used just ¾ of 
problems needed for convergence of LHTNDT for 
training and tested the learned preconditions on a 
random test set. In the diagram depicted in figure 4, 
the precision of method preconditions learned by ¾ 
problems needed for convergence is shown. 
Although the planner could not find a plan for all 
test problems, but it can be seen that LHTNDT can 
learn most of method preconditions even before full 
convergence, because it tries to extract as much 
information as it can form input plan traces. The 
precisions are high because we have taken into 
account the condition of objects both in the current 
state and goal state.   

5 CONCLUSIONS AND FUTURE 
WORK 

LHTNDT is an algorithm that learns method 
preconditions for HTN planner. Its input consists of 
annotated optimal plan traces produced by another 
planner (HSP*). LHTNDT takes into account the 
structure of current and goal state for learning 
conditions of applying a method. Diverse structure 
of training samples are extracted by checking the 
graph isomorphism among created graphs for 
samples. In our experiments in blocks world 
domain, although LHTNDT needed various plan 
traces to converge, according to the results for 
precision of planning domain before full 
convergence of preconditions, it learned most of 
necessary conditions of methods relatively quickly. 
Regarding the fact that no structurally repetitive 
training sample is considered for learning and also 
the relative state of relevant domain objects in both 
current and goal states are explored, it can be 
claimed that LHTNDT produces correct 
preconditions for HTN planning domain. 
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Figure 3: Number of plan traces needed to converge. 

ICINCO 2008 - International Conference on Informatics in Control, Automation and Robotics

64



A decision tree represents the preconditions of 
domain methods as disjunctive normal form of 
sentences. We believe that some rules can be 
extracted from the decision trees. Therefore, axioms 
can be used in presenting the preconditions. If the 
existence of recursion is verified in a method 
precondition decision tree, the rules will be written 
in such a way that the rules that are extracted from 
smaller domains can be used for larger domains. 
LHTNDT algorithm learns preconditions of HTN 
methods. Our future work will include developing 
techniques to learn HTN methods' structures from 
plan traces produced by another planner. 
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Figure 4: Precision of method preconditions learned by ¾ 
of plan traces needed for full convergence. 
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